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The main objective of this study is to clarify the effect of thermal wall boundary
conditions on turbulence statistics and structures in a compressible turbulent flow.
This work is an extension of Morinishi et al. (J. Fluid Mech. vol. 502, 2004, p. 273),
who performed DNS of compressible turbulent channel flow between adiabatic
and isothermal walls at Mach number M = 1.5 (Case 2). We address the question of
whether the modification of turbulence statistics is attributable to the effect of the adia-
batic wall boundary condition or the effect of the increase of wall temperature caused
by the adiabatic wall boundary condition. New DNS of the compressible turbulent
channel flow between isothermal walls with the wall temperature difference at the
Mach number M = 1.5 (Case 1) and DNS of the corresponding incompressible
turbulent flow with passive scalar transport (Case I) are performed. The present
study shows that the mean temperature profile near the high-temperature wall for
Case 1 has an additional maximum due to the friction work, while such an additional
maximum does not appear for Cases 2 and I. The additional maximum leads to a
corresponding near-wall maximum of temperature fluctuations. We find the direction
of energy transfer due to pressure work near the adiabatic wall for Case 2 being
opposite to that near the isothermal wall to be due to the effect of the high-
temperature wall, not to the effect of the adiabatic wall. These findings are explained
by using the budgets of internal energy and temperature variance transport equations.

1. Introduction
Experimental results on wall-bounded compressible turbulent flow have been dis-

cussed and reviewed by Bradshaw (1977), Fernholz & Finley (1977), Lele (1994), Spina,
Smits & Robinson (1994) and Smits & Dussauge (1996). These valuable investigations
reveal considerable knowledge about the effect of compressibility on, for example,
the friction coefficient and the mean velocity profile, which has contributed to the
engineering and industrial developments of supersonic vehicles and combustion. For
wall-bounded compressible turbulent flow, even if the Mach number is not large,
the variation in the temperature profile is usually large near the wall and results
in the modification of turbulence statistics and structures, compared to those found
in the incompressible counterpart. These modifications are strongly affected by the
different thermal wall boundary conditions. However, experimental measurements
of temperature and pressure profiles are difficult for wall-bounded compressible
turbulent flow, and to the best of our knowledge the effects of the thermal wall
boundary conditions on turbulence statistics and structures have not been examined.
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As an alternative to experimental investigations of wall-bounded compressible tur-
bulence, direct numerical simulation (DNS) has been used. Coleman, Kim & Moser
(1995), Lechner, Sesterhenn & Friedrich (2001) and Foysi, Sarkar & Friedrich (2004)
performed DNS of compressible turbulent channel flow between isothermal walls
without any wall temperature difference at bulk Mach numbers M = 3.0, 1.5 and 3.5.
Also, Guarini et al. (2000) conducted DNS of the compressible turbulent boundary
layer flow on an adiabatic wall with free-stream Mach numbers up to 2.5. To
complement these studies, Morinishi, Tamano & Nakabayashi (2004) performed
DNS of compressible turbulent channel flow between adiabatic and isothermal walls
at M = 1.5, and reported differences in turbulence statistics and energy transfer near
both the adiabatic and isothermal walls. However, it was not possible to distinguish
between the effect of the adiabatic wall boundary condition (i.e. ∂T /∂y = 0) and the
effect of the increase of wall temperature caused by the adiabatic wall boundary
condition.

As typical numerical simulations with high-temperature wall boundary conditions,
Nicoud (1999) and Wang & Pletcher (1996) performed DNS and LES respectively
of turbulent channel flow with variable properties between isothermal walls, and
investigated the effect of the thermal wall boundary condition on turbulence statistics.
However, since the friction work term in the energy transport equation was negligible
in their numerical simulations, which corresponds to simulations at zero Mach
number, the effect of the high-temperature wall for wall-bounded compressible
turbulent flow has not been clarified.

In this study, a new DNS of compressible turbulent channel flow at M = 1.5
between isothermal walls with different wall temperatures (Case 1) is performed.
DNS of the corresponding incompressible turbulent channel flow with passive scalar
transport (Case I) is also performed to compare turbulence statistics between wall-
bounded compressible and incompressible turbulent flows with a wall temperature
difference. In addition, the DNS data of Case 1 are compared with the DNS data of
Morinishi et al. (2004) for the compressible turbulent channel flow between adiabatic
and isothermal walls at M = 1.5 (Case 2), in order to distinguish the effects of the
adiabatic wall and the high-temperature wall on turbulence statistics and structures.
In addition to the effect of the different thermal wall boundary conditions, the effect
of the Mach number is important for wall-bounded compressible turbulent flow.
Readers are referred to the study of Foysi et al. (2004) in which the effect of the
Mach number on the turbulence statistics for compressible turbulent channel flow
between isothermal walls is thoroughly examined using DNS data up to M = 3.5.

2. Details of the DNS
2.1. Numerical methods

The continuity, momentum and internal energy equations are solved in the DNS
of compressible turbulent channel flow. We use the DNS algorithm presented by
Morinishi, Tamano & Nakabayashi (2003), which is based on an eighth-order B-
spline collocation method in the wall-normal (x2) direction and the Fourier Galerkin
method in the streamwise and spanwise (x1, x3) directions, and a third-order low-
storage Runge–Kutta time-advancement scheme. The validity of the present code was
proven by comparing our results with those of an existing DNS of Coleman et al.
(1995) (see Morinishi et al. 2003).

For incompressible turbulent channel flow with passive scalar transport, the con-
tinuity, Navier–Stokes and passive scalar transport equations are solved by a DNS
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Case Re Reτ M Pr γ L1 × L2 × L3 N1 × N2 × N3

1 3000 (104–267) 1.5 0.72 1.4 4πH × 2H × 4πH/3 120 × 240 × 120
2 3000 (86.4–279) 1.5 0.72 1.4 4πH × 2H × 4πH/3 120 × 240 × 120
I (2291) 150 − 0.72 − 4πH × 2H × 4πH/3 128 × 129 × 128

Table 1. Physical and numerical simulation parameters.

algorithm which consists of the Chebyshev-tau method in the x2-direction and the
Fourier Galerkin method in the x1, x3 directions (see Kleiser & Schumann 1980;
Werne 1995). A mixed-time-marching method is used, in which the diffusion term is
treated implicitly with the Crank–Nicolson method, and the third-order Runge–Kutta
method is used for all other terms. The validity of the present incompressible code
with passive scalar transport was confirmed by comparing our results with the DNS
database of Kasagi & Iida (1999) for incompressible turbulent channel flow with a
wall temperature difference.

2.2. Numerical conditions

The non-dimensional parameters for the present simulations of compressible turbulent
channel flows (Cases 1 and 2) are the Reynolds number Re =3000, the Mach
number M = 1.5, the Prandtl number Pr= µcp/κ = 0.72, and the ratio of specific
heats γ = cp/cv = 1.4 (where κ is thermal conductivity, µ is molecular viscosity, cp

is specific heat at constant pressure, and cv is specific heat at constant volume). In
this paper, ρ and T are the density and temperature, respectively. The Reynolds
number, Re = ρmUmH/µlw , is based on the bulk density, bulk velocity, channel half-
width, and viscosity at the lower wall, and the Mach number, M = Um/(γRTlw)1/2

(where R = (γ − 1)cp/γ is the gas constant), is based on the bulk velocity and
sound speed at the lower wall, where the subscript lw denotes the Reynolds-averaged
value at the lower wall. On the other hand, the non-dimensional parameters for
the present simulations of incompressible turbulent channel flow with passive scalar
transport (Case I) are the Reynolds number Reτ = 150 and the Prandtl number
Pr = 0.72. The Reynolds number, Reτ = uτH/ν, is based on the friction velocity, the
channel half-width, and the kinematic viscosity. Note that the Reynolds number Reτ

for the compressible turbulent flow is given by Reτ = H/δv , where δv = µw/(ρwuτ ),
uτ =(τw/ρw)1/2, and τw are the viscous length scale, the friction velocity, and the
wall shear stress, respectively. The physical and numerical parameters for all cases
are given in table 1. (N1, N2, N3) and (L1, L2, L3) are the number of grid points and
computational region in the x1-, x2- and x3-directions, respectively.

The no-slip wall boundary condition for the three velocity components is used for all
cases. The upper and lower walls of Case 1 are isothermal with the wall temperature
difference �Tw , where the upper wall temperature is higher than the lower, while the
upper and lower walls of Case 2 are adiabatic and isothermal, respectively. The wall
boundary condition of Case I corresponds to that of Case 1. To classify the compu-
tational cases corresponding to thermal wall boundary conditions, Cases 1L, 1H, 2I
and 2A are introduced for the compressible turbulent flow, where Cases 1L and 1H
represent the low- and high-temperature wall sides of Case 1, respectively, and Cases
2I and 2A represent the isothermal and adiabatic wall sides of Case 2, respectively.

For compressible turbulent channel flow, the grid resolution is evaluated by using
not only the Reynolds number based on the viscous length scale, Reτ , but also the
Reynolds number based on the semi-local viscous length scale, Re∗

τ = H/δv∗, where
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Figure 1. (a) Semi-local friction Reynolds number. (b) Local mean Mach number.

Case �x+
1 �x+

2 �x+
3 �x∗

1 �x∗
2 �x∗

3

1L 28 0.33−4.6 9.3 14−28 0.33−2.3 4.7−9.3
1H 11 0.13−1.8 3.6 11−13 0.13−2.1 3.6−4.2
2I 29 0.35−4.8 9.7 14−29 0.35−2.4 4.8−9.7
2A 9.1 0.11−1.5 3.0 9.1−13 0.11−2.2 3.0−4.4
I 15 0.045−3.7 4.9 15 0.045−3.7 4.9

Table 2. Grid resolution.

δv∗ = 〈µ〉/(〈ρ〉uτ∗) and uτ∗ = (τw/〈ρ〉)1/2 are the semi-local viscous length scale and
semi-local friction velocity, respectively. Here, 〈 〉 represents the Reynolds average
over time and the x1- and x3-directions. The profile of Re∗

τ is shown in figure 1(a).
The semi-local wall unit y∗ = y/δv∗ is used in the figure, instead of the usual wall unit
y+ = y/δv , where y is the distance from the wall. Figure 1(a) shows that the profiles of
Re∗

τ for Cases 1L and 1H almost agree with those for Cases 2I and 2A, respectively.
Note that uτ∗, δv∗ and y∗ correspond to uτ , δv and y+, respectively, for incompressible
turbulent channel flow (Case I), due to the constant fluid properties.

Grid resolution based on wall and local variables for the present simulations
is shown in table 2. The grid resolution in the wall unit and semi-local wall



Effect of thermal boundary conditions on compressible turbulent flow 365

unit is evaluated by using �x+
i =�xi/δv and �x∗

i = �xi/δv∗, respectively, where
�xi(i = 1, 2, 3) is the grid width in the xi-direction. The resolution of Cases 1 and
2 is comparable with that of Coleman et al. (1995) and Guarini et al. (2000) for
compressible turbulent flow, while the resolution of Case I is comparable with that
of Kasagi & Iida (1999) for incompressible turbulent flow. In addition, we confirmed
that the present DNS data had sufficient resolution and domain size by examining
one-dimensional energy spectra and two-point correlations.

Although the semi-local friction Reynolds number is similar for Cases 1 and 2, spe-
cial care should be taken regarding the Mach number effect, especially in comparing
with Case I (incompressible flow), since a semi-local scaling cannot account for
both Mach and Reynolds number effects. The profile of local mean Mach number
〈M〉 = 〈u1〉/(γR〈T 〉)1/2 is given in figure 1(b). It is seen that the profiles of 〈M〉 for
Cases 1 and 2 are similar to each other, and they are greater than unity except near
the wall. Their maxima are about 1.3 which is smaller than maximum (� 2.3) of
Foysi et al. (2004) at M = 3.5, but the present compressible situations are adequate
for supersonic channel flows.

3. Results and discussion
3.1. Profiles of mean temperature and root-mean-square temperature fluctuation

The profile of mean temperature (〈T 〉 − Tlw)/�Tw is shown in figure 2(a), where �Tw

is the difference in temperature at the upper and lower walls. The profile of mean
temperature for Case I is antisymmetric with respect to the location x2/H =0, while
it is not for Cases 1 and 2. The mean temperature gradients near the centre of the
channel for all cases are almost the same. The figure shows that the maximum of
the mean temperature appears near the high-temperature wall for Case 1, while it
does not appear near the high-temperature wall for Case I because friction work
does not exist for incompressible turbulent flow with passive scalar transport. This
is supported by the finding that the temperature profile near the wall simulated by
Nicoud (1999) for M � 0 agrees well with that of Case I and is significantly different
from that of Case 1. The mean temperature of Case 2 approaches the upper wall
with zero slope, owing to the adiabatic wall boundary condition. The difference in
the mean temperature profiles of Cases 1 and 2 near the upper wall is explained by
examining the budget of the internal energy transport equation (see § 3.2).

Figure 2(b) shows the profile of root-mean-square (RMS) temperature fluctuation
(T ′)rms/�Tw =

√
〈T ′2〉 /�Tw , where the prime represents the turbulent fluctuation

with respect to the Reynolds average 〈 〉. The maximum of (T ′)rms/�Tw appears at
the centre of the channel for Case I, while it appears near the lower and upper walls
for Cases 1 and 2, respectively. The peaks of (T ′)rms/�Tw near the lower wall for
Cases 1 and 2 are totally different. The profile of (T ′)rms/�Tw for Case 1 has an
additional maximum in the region very close to the high-temperature (upper) wall.
This maximum for Case 1 is produced by the maximum of the mean temperature
near the high-temperature wall; this mechanism is explained by examining the budget
of the temperature variance transport equation (see § 3.3).

3.2. Budget of internal energy

For compressible turbulent channel flow, energy is transferred among the turbulent
kinetic, mean kinetic and internal energy components, while their total remains
fixed. Here, we focus on the transport equation of the internal energy {e} = cv{T } to
better understand the mean temperature profiles with different thermal wall boundary
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Figure 2. (a) Mean temperature. (b) RMS temperature fluctuation.

conditions. In this paper, the Favre average of a quantity φ is given by {φ} = 〈ρφ〉/〈ρ〉,
and a double prime represents the turbulent fluctuation with respect to the Favre
average. The internal energy equation in fully developed turbulent channel flow is as
follows (see Huang, Coleman & Bradshaw 1995; Morinishi et al. 2004):

De1 + De2 + εVK + εk − CK1 − Ck3 = 0, (3.1)

where De1 = −∂(〈ρ〉cv{u′′
2T

′′})/∂x2 is the turbulent diffusion term, De2 = −∂〈q2〉/∂x2

is the molecular diffusion term (qj = −κ∂T /∂xj is heat flux), εVK = 〈τi2〉∂〈ui〉/∂x2 is
the viscous dissipation per unit volume, εk = 〈τ ′

ij ∂u′
i/∂xj 〉 is the dissipation per unit

volume, CK1 = 〈p〉∂〈u2〉/∂x2 is the pressure work term, and Ck3 = 〈p′∂u′
k/∂xk〉 is the

pressure–dilatation correlation term, where the summation convention applies to the
italic indices i, j, k. The profiles of these terms in the internal energy equation for
Case 1, scaled by the bulk variable ρmU 3

m/H , are presented in figure 3. For Case 1,
the absolute values of De1, De2 and εVK near the lower wall, which corresponds to the
low-temperature wall, are larger than those near the upper high-temperature wall.
The budgets scaled by the mixture of local and semi-local variables, 〈ρ〉u3

τ∗/δv∗, for
Cases 1L and 1H are shown in figures 4(a) and 4(b), respectively. The absolute
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Figure 3. Budgets of internal energy transport equation for Case 1.

0 50 100

0 50 100

–1

0

1

G
ai

n
L

os
s

D*
e1

D*
e2

(a)

–1

0

1

y*

G
ai

n
L

os
s

(b)

ε*
VK

ε*
k

C*
K1

C*
k3

Figure 4. Internal energy budgets in semi-local wall units: (a) Case 1L and (b) Case 1H.



368 S. Tamano and Y. Morinishi

–1 0

–0.005

0

0.005

C
K

1/
(ρ

m
U

3 m
/H

)
Case 1
Case 2

(a)

–1 0 1
–0.10

–0.05

0

x2/H

D
e2

/(
ρ

m
U

3 m
/H

)

(b)

1

Figure 5. (a) Pressure work term. (b) Molecular diffusion term.

values of D∗
e1, D∗

e2 and ε∗
VK

for Case 1L are comparable with those for Case 1H, which
indicates that the difference observed in the internal energy budget scaled by ρmU 3

m/H

between Cases 1L and 1H is mainly due to the variable property effect. The trend
here is the same as that for Case 2 (Morinishi et al. 2004). The pressure–dilatation
correlation term Ck3 in figure 3 is almost zero in the present simulation at M = 1.5.
Hence, we shall examine the pressure work term CK1 and molecular diffusion term
De2 below.

Figure 5(a) shows the profile of the pressure work term CK1 for Cases 1 and
2. This term, which is identically zero for the incompressible case, transfers energy
between the internal and mean kinetic energy components (Morinishi et al. 2004).
It is found that the value of CK1 is positive both near the high-temperature wall of
Case 1 and near the adiabatic wall of Case 2, while it is negative near the lower
isothermal wall for Cases 1 and 2. This means that CK1 transfers mean kinetic energy
to internal energy near the high-temperature and adiabatic walls, while it transfers
internal energy to mean kinetic energy near the lower isothermal walls. Thus the
direction of energy transfer due to pressure work near the adiabatic wall for Case 2
(opposite to that near the isothermal wall) is attributable to the effect of the increase
in wall temperature caused by the adiabatic wall boundary condition, and not to the
effect of the adiabatic wall boundary condition itself.

The profile of the molecular diffusion term De2 for Cases 1 and 2 is shown in
figure 5(b). Near the upper wall, the positive maximum of De2 appears for Case 2, but
not for Case 1. This difference leads to a discrepancy between the mean temperature
profiles near the high-temperature wall which corresponds to the upper wall of Case 1
and the adiabatic wall which corresponds to the upper wall of Case 2.
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Figure 6. Budget of the temperature variance transport equation for Case 1.

3.3. Budget of temperature variance

An investigation of the temperature variance budget is helpful for understanding the
profile of the RMS turbulent fluctuation. While this has been done for the DNS data
from the incompressible passive scalar case, as far as we know it has not for wall-
bounded compressible flow. The transport equation of temperature variance {T ′′2}
for fully developed turbulent channel flow is

PT + CT 1 + CT 2 + CT 3 + DT 1 + DT 2 − εT = 0, (3.2)

where the production term PT , compressibility terms CT 1, CT 2, and CT 3, turbulent
diffusion term DT 1, molecular diffusion term DT 2, and dissipation per unit volume εT

are defined as follows:

PT = −〈ρ〉{T ′′u′′
2}∂{T }/∂x2, (3.3)

CT 1 = − 1

cv

[
〈T ′′〉〈p〉∂〈u2〉

∂x2

+ 〈T ′′〉
〈

p′ ∂u′
i

∂xi

〉
+ 〈T ′p′〉∂〈u2〉

∂x2

+ 〈p〉
〈

T ′ ∂u′
i

∂xi

〉]
, (3.4)

CT 2 =
1

cv

[
〈T ′′〉〈τi2〉∂〈ui〉

∂x2

+ 〈T ′′〉
〈

τ ′
ij

∂u′
i

∂xj

〉
+ 〈T ′τ ′

i2〉∂〈ui〉
∂x2

+ 〈τij 〉
〈

T ′ ∂u′
i

∂xj

〉]
, (3.5)

CT 3 = −〈T ′′〉∂〈q2〉/∂x2/cv, (3.6)

DT 1 = −∂(〈ρ〉{T ′′2u′′
2})/∂x2/2, (3.7)

DT 2 =
1

cv

∂

∂x2

(
〈T ′κ ′〉∂〈T 〉

∂x2

+

〈
T ′κ ′ ∂T ′

∂x2

〉
+ 〈κ〉

〈
T ′ ∂T ′

∂x2

〉)
, (3.8)

εT =
1

cv

[〈
κ ′ ∂T ′

∂x2

〉
∂〈T 〉
∂x2

+

〈
κ ′ ∂T ′

∂xj

∂T ′

∂xj

〉
+ 〈κ〉

〈
∂T ′

∂xj

∂T ′

∂xj

〉]
, (3.9)

where the pressure p is evaluated by the state equation. Figure 6 shows these terms in
the temperature variance transport equation for Case 1, scaled by ρmUmT 2

lw/H . The
values of the production PT and dissipation εT near the lower wall are larger than
those near the upper higher-temperature wall. The contribution of the compressibility
terms CT 1, CT 2 and CT 3 to the energy transfer is not negligible near the lower-
temperature wall. Note that these compressibility terms have not been taken into
account in the study of turbulent flow with variable properties by Wang & Pletcher
(1996). The profiles of the production term PT for Cases 1 and 2 are shown in figure 7.
A weak maximum for Case 1 appears in the region very close to the upper wall, while
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Figure 7. Production terms in the temperature variance transport equation.

it is not seen for Case 2. The maximum of PT for Case 1 corresponds to the maximum
of the RMS temperature fluctuation in the region very close to the high-temperature
wall.

3.4. Higher-order statistics

The higher-order statistics, i.e. the skewness and flatness factors, are useful in
understanding the near-wall turbulence structures of wall-bounded turbulent flow.
For wall-bounded compressible turbulent flow, however, our knowledge of these
quantities remains incomplete (Tamano & Morinishi 2000). The skewness factors
of the streamwise and wall-normal velocity fluctuations, S(u′

1) = 〈u′
1
3〉/(u′

1)
3
rms and

S(u′
2) = 〈u′

2
3〉/(u′

2)
3
rms, are shown in figures 8(a) and 8(b), respectively. The flatness

factors of the streamwise and wall-normal velocity fluctuations, F (u′
1) = 〈u′

1
4〉/(u′

1)
4
rms

and F (u′
2) = 〈u′

2
4〉/(u′

2)
4
rms, are shown in figures 9(a) and 9(b), respectively. Note that

the semi-local wall unit is used as the abscissa in these figures. The profiles of S(u′
1)

and F (u′
1) for Cases 1 and 2 agree well with the incompressible data (Case I), which

do not depend on the thermal boundary conditions. This means that Morkovin’s
hypothesis, which assumes that the compressibility effect is mainly due to the variable
property effect and that the turbulence structures of compressible boundary layers
are comparable with those of incompressible ones when the variable property effect
is taken into account, is correct for the higher-order turbulence statistics of the
streamwise velocity fluctuation (Morkovin 1962). However, the profiles of S(u′

2) and
F (u′

2) for compressible flow do not collapse on the data of Case I in the region
y∗ < 20, where the values of S(u′

2) for Cases 1L and 2I are smaller than those for
Cases 1H and 2A, while the values of F (u′

2) for Cases 1L and 2I are larger. The
difference in S(u′

2) and F (u′
2) between compressible and incompressible flows is due

to the low Reynolds number and the effect of compressibility, which correspond to
the fact that 〈u′′

2〉 = 〈u2〉 − {u2} = −〈ρ ′u′
2〉/〈ρ〉 is not zero due to density fluctuations.

4. Conclusions
To complement the related study of Morinishi et al. (2004), where the effect of

different thermal wall boundary conditions on turbulence statistics was investigated
using DNS of compressible turbulent channel flow between adiabatic and isothermal
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walls at Mach number M = 1.5 and Re =3000 (Case 2), DNS of compressible
turbulent channel flow between isothermal walls with different temperatures at
M = 1.5 and Re= 3000 (Case 1) and DNS of incompressible turbulent channel
flow between isothermal walls with different temperatures at Reτ = 150 (Case I)
were performed. To clarify the difference between the effect of the rise in wall
temperature due to the adiabatic wall boundary condition and the effect due to
the high-temperature wall boundary condition, DNS data of Cases 1 and 2 were
compared with each other.

Near the high-temperature wall for Case 1, the mean temperature profile has an
additional maximum due to the friction work, which does not appear for Cases 2 and
I. The additional maximum leads to the corresponding maximum of RMS temperature
fluctuation. This is consistent with the numerical result that the production term of
temperature variance has an additional maximum in the region very close to the
high-temperature wall. The difference in the mean temperature profiles at the high-
temperature and adiabatic walls is explained by the numerical result that a positive
maximum of the molecular diffusion term appears near the upper wall for Case 2,
but not for Case 1. The direction of energy transfer due to pressure work near the
high-temperature wall for Case 1 is the same as that near the adiabatic wall for
Case 2. This explains why the direction of energy transfer due to pressure work
near the adiabatic wall for Case 2 being opposite to that near the isothermal wall is
attributable to the effect of the high-temperature wall, not to the effect of the adiabatic
wall. The compressibility terms of the temperature variance transport equation are
not negligible near the low-temperature wall for Case 1.

The computations performed on a FUJITSU VPP5000 at the Center for Promotion
of Computational Science and Engineering, Japan Atomic Energy Research Institute,
are gratefully acknowledged.
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